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MYRRHA plant: purposes and general design

® MYRRHA: Multi-purpose hYbrid Research Reactor for High-tech
Applications

® Pool-type Accelerator Driven System (ADS) with ability to operate
also as critical reactor

® Liquid Lead-Bismuth Eutectic (LBE) as primary coolant
® Main purposes:
® Flexible irradiation facility

® Minor Actinides (MAs) transmutation demonstration in support of
R&D on a "closed fuel cycle" (Generation IV requirement)

® ADS demonstrator
® Lead Fast Reactor demonstrator
® (Pre-) Gen IV plant

® MYRRHA project recognized as high priority infrastructure for
nuclear research in Europe
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MYRRHA plant: purposes and general design

® MYRRHA primary system design current status (design revision
1.6):
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MYRRHA plant: purposes and general design

® Primary system:
® Completely enclosed in primary vessel (pool-type)
® Primary LBE flow path:
Lower plenum (270 °C)
Core (100 MW)
Upper plenum (~325 °C)
4 Primary Heat eXchanger (PHX) units
2 Primary Pumps (PPs)
Lower plenum
® Cold plenum separated from hot plenum by Diaphragm supporting
core barrel and components’ penetrations

® Above LBE free surface: Nitrogen layer
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MYRRHA plant: purposes and general design

® MYRRHA secondary system (one loop out of four) design state of
the art (developed in FP7 Central Design Team project):
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MYRRHA plant: purposes and general design

® Secondary system:
® Four independent secondary loops (linked through PHXs)
® Operated with forced flow two-phase water mixture (16 bar, 200 °C)

® Secondary water flow path:

PHX inlet (~saturated conditions)
PHX outlet (x ~ 0.3, o ~ 0.9)
Moisture separated in steam drum

® In normal operation, secondary water temperature kept constant by
control system (primary LBE temperature changing as a function of
core loading)

® Tertiary system: dissipating heat to external environment through
air condensers (forced circulation air fans)

® Condensed steam recirculated into steam drum
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MYRRHA plant: purposes and general design

® MYRRHA plant designed for 110 MW as nominal power:
® 100 MW = core power
® 10 MW - additional heat sources:
In Vessel Storage Tank (IVST)
Po decay heat
Pump power
v heating
Spallation target power
® Normal operation - all three cooling systems designed to
operate in forced circulation

® Accidental conditions = DHR in full natural circulation (three
cooling loops operating in passive mode)

® Two systems to remove decay heat power:

® DHR-1: secondary and tertiary systems operating in passive mode
® DHR-2: Reactor Vessel Auxiliary Cooling System (RVACS)
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MYRRHA PHX general description

® MYRRHA PHX: counter-current
shell-and-tube concept:

® 684 stainless steel (AISI 316L)
tubes

® Wall thickness = 1 mm

® 2 tube plates (thickness = 80 mm)

® Double-walled central feedwater
PIpe

® Double-walled bottom head

® Top head

® External shroud
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MYRRHA PHX general description

® MYRRHA PHX main geometrical and thermal-hydraulical
parameters:

Parameter Unit Value Parameter Unit Value

Power |n ohe PHX MW 27.5 PHX LBE |n|et temperature OC 325

Shroud external diameter mm 850 PHX LBE outlet temperature °C 270
Shroud internal diameter mm 820 LBE safe shutdown temperature °C 200
Feed water pipe external diameter mm 200 PHX LBE mass flow rate ke/s 3450
PHX water inlet t t °C 200

Water tubes number - 684 e NS ompeTaTe
] PHX water outlet temperature °C 201.4
Water tubes pitch mm 26
PHX water mass flow rate kg/s 47
Water tubes external diameter mm 16
PHX water pressure bar 16
Water tubes internal diameter mm 14 ]

PHX water outlet quality - 0.3

Thickness of water tubes mm L PHX water outlet void fraction - 0.9
Total length of water tubes mm 10920 LBE velocity m/s 0.93
Active length of water tubes mm 2100 Primary side LBE pressure drop bar 0.04

MYRRHA PHX main geometrical parameters Water outlet velocity m/s 3.3
Steam outlet velocity m/s 18.63

Secondary side water pressure drop bar 0.95

MYRRHA PHX main thermal-hydraulical parameters
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MYRRHA PHX general description

® MYRRHA PHX design presents the following characteristics:

® Heat exchange mostly limited to the PHX “active length” (~2.1m)
placed between inlet and outlet

® Wall developed two-phase flow inside the PHX tubes from the inlet
up to the top

® High aspect ratio (L/D) providing a better counter-current flow
development through the bundle

® Only one tube plate located under LBE
® Easier inspection and repair
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MYRRHA PHX general description

® Potential disadvantages coming from such design approach:

® High two-phase pressure drop in the tube bundle, with potential
increase of dynamic instabilities

® Notable tube length (~11m) possibly generating important
mechanical stresses (weight and thermal induced) in the tube plates
and vibrational stresses in the tube bundle

® Tube bundle in contact with the free surface level leading to possible
problems due to differential thermal expansion and level fluctuations
- thermal fatigue
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Main analysis findings and outcome

® MYRRHA PHX presents the following main features:
® Ledinegg instability not a concern because of the low exit quality

® DWO instability appearing in the system because of the limited
water subcooling temperature and the extended two-phase region

® Partial instability between certain Q/m intervals where slug flow
regime prevails in the active tube section

® By placing an orifice with a diameter ~4.7 mm, it is possible to
limit to some extent the unstable behavior of the system
® Induced instabilities do not respect the chosen stability criterion

® A design modification (or a different stability criterion) should be
considered
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Two-phase flow instabilities

® Two kinds of instabilities can be found in a boiling (2¢) tube
bundle of an HX:

® Static instabllity
® Dynamic instability
® Among these, three instability types identified for MYRRHA PHX:

® Ledinegg instability: region of Ap-m characteristic curve allowing for
more than a single solution, not always stable

® Density wave instability: triggered by difference in density between
the subcooled liquid entering the channel and the two-phase
mixture exiting = transient inertia, lags and feedbacks between
boiling channel parameters (mass flow rate, vapor generation rate,
pressure drop)

® Flow regime-induced instability: caused by extended operation in
specific flow regimes
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Ledinegg instability
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® Region A-B and region C-D: stable (~parabolic characteristic)

® Region B-C: unstable (operating point drifting toward B or C in case of
perturbation
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Ledinegg instability

® Ledinegq instability studied through analytical models

® System experiencing Ledinegg instabilities in conditions far from
normal operation (< 25% mass flow rate)

® Stability assured by low exit quality (~0.3)

® In all the operating conditions, the working point of the system
falls in a perfectly stable range:
® Mass flow rate per tube: 0.07 kg/s
® Tube pressure drop: 0.95 bar

® DHR conditions: PHX power input considerably lower than
normal operation - Ledinegg instability not an issue
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Density wave oscillation instability

® DWO instabilities studied
through RELAP5-3D simplified
model
® Real geometry has been
assumed for PHX tubes:
Correct dimensions
Correct local pressure drop
factors (Idel’chik)
® Not good response from the
DWO instability analysis
® Nominal flow and subcooling

conditions: ~ 60% maximum
power

® Increased subcooling: < 10%
maximum power
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Density wave oscillation instability — Parameters effect

® General effects of different parameters on system stability against
DWO instabilities:

® Qutlet quality increase has always a destabilizing effect > thermal
power increase and/or mass flow rate decrease have a destabilizing
effect

® Inlet subcooling increase has a stabilizing effect at high subcoolings
but a destabilizing effect at low subcoolings

® System pressure increase has a slight stabilizing effect but, causing
also other variations, the final outcome is not obvious

® Inlet throttling (in monophase region) increases stability
® QOutlet throttling (in two-phase region) reduces stability
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Density wave oscillation instability — Parameters effect

® Non-dimensional numbers introduced to account for all
parameters’ variations in a 2-D representation:
® Phase change number (Npch):

_ q Vi
Npch — mxh *
v Vi

® Subcooling number (Nsub):

h—hy w
Ngyp = * —
sub hyy v

® Advantages of the non-dimensional numbers use:
® Possibility to include all the parameters’ effects through ratios
® Only two numbers required
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Density wave oscillation instability
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Density wave oscillation instability — Stability map

PHX non-dimensional stability map
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Flow regime-induced instabilities

® In case PHX active length majority B

is in two-phase slug flow regime
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Flow regime-induced instabilities

Flow regime-induced instabilities
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Towards stability — Orifice dimensioning

® To avoid DWO instabillities, usual best practice solution is
Increasing the local pressure drop in the monophase region -
placing an orifice at tube inlet

® By assuming a local pressure drop factor K = 120, an orifice with
the following dimensions has been identified (Idel’chik):
® Length = 80 mm (same as lower tube plate)
® Diameter = ~ 4.7 mm ( about 30% of tube diameter)
® Stability map is shifted towards right (increased stability range)

® Little influence found by further increase of orifice local K factor
(= reducing orifice diameter) beyond K = 120, but potential
problems with local water velocity
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Towards stability — Stability map with orifice
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Induced instabilities — Stability criterion

® Resolving (or mitigating) different instabilities is not enough

® Additional design requirement: stability to induced perturbation
® Local mass flow rate disturbances
® Local power spikes

® An induced instability usually appears at power levels found to be
stable for DWO
® Possible consequences:
® Amplifying oscillations
® Damping oscillations
® Stability criterion proposal (from BWR technology):
® X2/Xo < 0.25 (Xn = amplitude of oscillations)
® Mass flow rate perturbation simulated through a valve placed at

inlet of one channel and experiencing a closing cycle shaped as
half-cosine (0.4 s)
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Induced instabilities — Typical profile
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Induced instabilities — Margin map vs. subcooling

- Stability margin vs. subcooling map
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Induced instabilities — Margin map vs. power
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Induced instabilities — Qutcome

® Stability to induced perturbations is obtained in all normal
operation conditions (with orifice K = 120)

® Respect of induced instability criterion (with orifice K = 120) is
only possible in specific conditions
® Induced oscillations become amplified in case of:
® Subcooling < 192 °C
® Power > 123%
® Potential solutions:
® Adoption of new (less stringent) criterion
® Design modifications
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Main analysis findings and outcome

® MYRRHA PHX presents the following main features:
® Ledinegg instability not a concern because of the low exit quality

® DWO instability appearing in the system because of the limited
water subcooling temperature and the extended two-phase region

® Partial instability between certain Q/m intervals where slug flow
regime prevails in the active tube section

® By placing an orifice with a diameter ~4.7 mm, it is possible to
limit to some extent the unstable behavior of the system
® Induced instabilities do not respect the chosen stability criterion

® A design modification (or a different stability criterion) should be
considered
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Conclusions and recommendation

® MYRRHA PHX behavior against instabilities is overall satisfactory

® Parameter values relatively far from the nominal conditions must
be avoided
® Recommendation from stability analysis:

® Avoid the slug flow regime during normal operation through
adoption of suitable Q/m values at all times

® Obtain a relatively low subcooling temperature at the PHX inlet
through pressure losses and/or heat sources in the feedwater line
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