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MYRRHA plant: purposes and general design 

 MYRRHA: Multi-purpose hYbrid Research Reactor for High-tech 

Applications 

 Pool-type Accelerator Driven System (ADS) with ability to operate 

also as critical reactor 

 Liquid Lead-Bismuth Eutectic (LBE) as primary coolant 

 Main purposes: 

 Flexible irradiation facility 

Minor Actinides (MAs) transmutation demonstration in support of 

R&D on  a "closed fuel cycle" (Generation IV requirement) 

 ADS demonstrator 

 Lead Fast Reactor demonstrator 

 (Pre-) Gen IV plant 

 MYRRHA project recognized as high priority infrastructure for 

nuclear research in Europe 
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MYRRHA plant: purposes and general design 

1. Reactor vessel 

2. Reactor cover 

3. Diaphragm 

4. Primary heat exchanger 

5. Pump 

6. In-Vessel Fuel Handling Machine 

7. Core barrel 

8. Above Core Structure 

9. Core plug 

10. Spallation window 

 MYRRHA primary system design current status (design revision 

1.6): 
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MYRRHA plant: purposes and general design 

 Primary system: 

 Completely enclosed in primary vessel (pool-type) 

 Primary LBE flow path: 

 Lower plenum (270 °C) 

Core (100 MW) 

Upper plenum (~325 °C) 

4 Primary Heat eXchanger (PHX) units 

2 Primary Pumps (PPs) 

 Lower plenum 

 Cold plenum separated from hot plenum by Diaphragm supporting 

core barrel and components’ penetrations 

 Above LBE free surface: Nitrogen layer 
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MYRRHA plant: purposes and general design 

 MYRRHA secondary system (one loop out of four) design state of 

the art (developed in FP7 Central Design Team project): 
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MYRRHA plant: purposes and general design 

 Secondary system: 

 Four independent secondary loops (linked through PHXs) 

Operated with forced flow two-phase water mixture (16 bar, 200 °C) 

 Secondary water flow path: 

PHX inlet (~saturated conditions) 

PHX outlet (x ~ 0.3, a ~ 0.9) 

Moisture separated in steam drum 

 In normal operation, secondary water temperature kept constant by 

control system (primary LBE temperature changing as a function of 

core loading) 

 Tertiary system: dissipating heat to external environment through 

air condensers (forced circulation air fans) 

 Condensed steam recirculated into steam drum 

7 



Copyright © 2013  

SCK•CEN 

MYRRHA plant: purposes and general design 

 MYRRHA plant designed for 110 MW as nominal power: 

 100 MW  core power 

 10 MW  additional heat sources: 

 In Vessel Storage Tank (IVST) 

Po decay heat 

Pump power 

 g heating 

Spallation target power  

 Normal operation  all three cooling systems designed to 

operate in forced circulation 

 Accidental conditions  DHR in full natural circulation (three 

cooling loops operating in passive mode) 

 Two systems to remove decay heat power: 

 DHR-1: secondary and tertiary systems operating in passive mode 

 DHR-2: Reactor Vessel Auxiliary Cooling System (RVACS) 
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MYRRHA PHX general description 

 MYRRHA PHX: counter-current 

shell-and-tube concept: 

 684 stainless steel (AISI 316L) 

tubes 

Wall thickness = 1 mm 

 2 tube plates (thickness = 80 mm) 

 Double-walled central feedwater 

pipe  

 Double-walled bottom head 

 Top head  

 External shroud 
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MYRRHA PHX general description 

 MYRRHA PHX main geometrical and thermal-hydraulical 

parameters: 
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Parameter Unit Value 

Power in one PHX MW 27.5 

Shroud external diameter mm 850 

Shroud internal diameter mm 820 

Feed water pipe external diameter mm 200 

Water tubes number - 684 

Water tubes pitch mm 26 

Water tubes external diameter mm 16 

Water tubes internal diameter mm 14 

Thickness of water tubes mm 1 

Total length of water tubes mm  10920 

Active length of water tubes mm 2100 

Parameter Unit Value 

PHX LBE inlet temperature °C 325 

PHX LBE outlet temperature °C 270 

LBE safe shutdown temperature °C 200 

PHX LBE mass flow rate kg/s 3450 

PHX water inlet temperature °C 200 

PHX water outlet temperature °C 201.4 

PHX water mass flow rate kg/s 47 

PHX water pressure bar 16 

PHX water outlet quality - 0.3 

PHX water outlet void fraction - 0.9 

LBE velocity m/s 0.93 

Primary side LBE pressure drop bar 0.04 

Water outlet velocity m/s 3.3 

Steam outlet velocity m/s 18.63 

Secondary side water pressure drop bar 0.95 

MYRRHA PHX main geometrical parameters 

MYRRHA PHX main thermal-hydraulical parameters 
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MYRRHA PHX general description 

 MYRRHA PHX design presents the following characteristics: 

 Heat exchange mostly limited to the PHX “active length” (~2.1m) 

placed between inlet and outlet 

Wall developed two-phase flow inside the PHX tubes from the inlet 

up to the top 

 High aspect ratio (L/D) providing a better counter-current flow 

development through the bundle 

Only one tube plate located under LBE 

 Easier inspection and repair 
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MYRRHA PHX general description 

 Potential disadvantages coming from such design approach: 

 High two-phase pressure drop in the tube bundle, with potential 

increase of dynamic instabilities  

Notable tube length (~11m) possibly generating important 

mechanical stresses (weight and thermal induced) in the tube plates 

and vibrational stresses in the tube bundle 

 Tube bundle in contact with the free surface level leading to possible 

problems due to differential thermal expansion and level fluctuations 

 thermal fatigue 
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Main analysis findings and outcome 

 MYRRHA PHX presents the following main features: 

 Ledinegg instability not a concern because of the low exit quality 

 DWO instability appearing in the system because of the limited 

water subcooling temperature and the extended two-phase region 

 Partial instability between certain Q/m intervals where slug flow 

regime prevails in the active tube section 

 By placing an orifice with a diameter ~4.7 mm, it is possible to 

limit to some extent the unstable behavior of the system 

 Induced instabilities do not respect the chosen stability criterion 

 A design modification (or a different stability criterion) should be 

considered 
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Two-phase flow instabilities 

 Two kinds of instabilities can be found in a boiling (2f) tube 

bundle of an HX: 

 Static instability 

 Dynamic instability 

 Among these, three instability types identified for MYRRHA PHX: 

 Ledinegg instability: region of Dp-m characteristic curve allowing for 

more than a single solution, not always stable 

 Density wave instability: triggered by difference in density between 

the subcooled liquid entering the channel and the two-phase 

mixture exiting  transient inertia, lags and feedbacks between 

boiling channel parameters (mass flow rate, vapor generation rate, 

pressure drop) 

 Flow regime-induced instability: caused by extended operation in 

specific flow regimes 
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Ledinegg instability 
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 Region A-B and region C-D: stable (~parabolic characteristic) 

 Region B-C: unstable (operating point drifting toward B or C in case of 

perturbation 
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Ledinegg instability 

 Ledinegg instability studied through analytical models 

 System experiencing Ledinegg instabilities in conditions far from 

normal operation (< 25% mass flow rate) 

 Stability assured by low exit quality (~0.3) 

 In all the operating conditions, the working point of the system 

falls in a perfectly stable range: 

Mass flow rate per tube: 0.07 kg/s 

 Tube pressure drop: 0.95 bar 

 DHR conditions: PHX power input considerably lower than 

normal operation  Ledinegg instability not an issue 
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Density wave oscillation instability 

 DWO instabilities studied 

through RELAP5-3D simplified 

model 

 Real geometry has been 

assumed for PHX tubes: 

Correct dimensions 

Correct local pressure drop 

factors (Idel’chik) 

 Not good response from the 

DWO instability analysis 

Nominal flow and subcooling 

conditions: ~ 60% maximum 

power 

 Increased subcooling: < 10% 

maximum power 

Water inlet boundary condition 

PHX lower head 

PHX 

tube 

PHX 

tube 

PHX upper head 

Water outlet boundary condition 

PHX 

LBE 

sub-

channel 

LBE inlet boundary 

condition 

LBE outlet boundary 

condition 
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Density wave oscillation instability – Parameters effect 

 General effects of different parameters on system stability against 

DWO instabilities: 

Outlet quality increase has always a destabilizing effect  thermal 

power increase and/or mass flow rate decrease have a destabilizing 

effect 

 Inlet subcooling increase has a stabilizing effect at high subcoolings 

but a destabilizing effect at low subcoolings 

 System pressure increase has a slight stabilizing effect but, causing 

also other variations, the final outcome is not obvious 

 Inlet throttling (in monophase region) increases stability 

Outlet throttling (in two-phase region) reduces stability 
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Density wave oscillation instability – Parameters effect 

 Non-dimensional numbers introduced to account for all 

parameters’ variations in a 2-D representation: 

 Phase change number (Npch): 

𝑁𝑝𝑐ℎ =
𝑞

𝑚∗ℎ𝑙𝑣
∗
𝑣𝑙𝑣

𝑣𝑙
 

 Subcooling number (Nsub): 

𝑁𝑠𝑢𝑏 =
ℎ−ℎ𝑓

ℎ𝑙𝑣
∗
𝑣𝑙𝑣

𝑣𝑙
 

 Advantages of the non-dimensional numbers use: 

 Possibility to include all the parameters’ effects through ratios 

Only two numbers required 
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Density wave oscillation instability 
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Density wave oscillation instability – Stability map 
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Flow regime-induced instabilities 

 In case PHX active length majority 

is in two-phase slug flow regime 

(certain Q/m specific interval, 

function of subcooling)  channel 

flow becomes unstable 

 Annular flow more stable  

reducing flow (or increasing 

power) resolves flow-induced 

instability 

 Important for low power operation 

or for start-up sequence 
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Flow regime-induced instabilities 
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Towards stability – Orifice dimensioning 

 To avoid DWO instabilities, usual best practice solution is 

increasing the local pressure drop in the monophase region  

placing an orifice at tube inlet 

 By assuming a local pressure drop factor K = 120, an orifice with 

the following dimensions has been identified (Idel’chik): 

 Length = 80 mm (same as lower tube plate) 

 Diameter = ~ 4.7 mm ( about 30% of tube diameter) 

 Stability map is shifted towards right (increased stability range) 

 Little influence found by further increase of orifice local K factor 

( reducing orifice diameter) beyond K = 120, but potential 

problems with local water velocity 
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Towards stability – Stability map with orifice 
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Induced instabilities – Stability criterion 

 Resolving (or mitigating) different instabilities is not enough 

 Additional design requirement: stability to induced perturbation 

 Local mass flow rate disturbances 

 Local power spikes 

 An induced instability usually appears at power levels found to be 

stable for DWO 

 Possible consequences: 

 Amplifying oscillations 

 Damping oscillations 

 Stability criterion proposal (from BWR technology): 

 X2/X0 < 0.25 (Xn = amplitude of oscillations) 

 Mass flow rate perturbation simulated through a valve placed at 

inlet of one channel and experiencing a closing cycle shaped as 

half-cosine (0.4 s) 
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Induced instabilities – Typical profile 
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Induced instabilities – Margin map vs. subcooling 
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Induced instabilities – Margin map vs. power 
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Induced instabilities – Outcome 

 Stability to induced perturbations is obtained in all normal 

operation conditions (with orifice K = 120) 

 Respect of induced instability criterion (with orifice K = 120) is 

only possible in specific conditions 

 Induced oscillations become amplified in case of: 

 Subcooling < 192 °C 

 Power > 123% 

 Potential solutions: 

 Adoption of new (less stringent) criterion 

 Design modifications 
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Main analysis findings and outcome 

 MYRRHA PHX presents the following main features: 

 Ledinegg instability not a concern because of the low exit quality 

 DWO instability appearing in the system because of the limited 

water subcooling temperature and the extended two-phase region 

 Partial instability between certain Q/m intervals where slug flow 

regime prevails in the active tube section 

 By placing an orifice with a diameter ~4.7 mm, it is possible to 

limit to some extent the unstable behavior of the system 

 Induced instabilities do not respect the chosen stability criterion 

 A design modification (or a different stability criterion) should be 

considered 
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Conclusions and recommendation 

 MYRRHA PHX behavior against instabilities is overall satisfactory 

 Parameter values relatively far from the nominal conditions must 

be avoided 

 Recommendation from stability analysis: 

 Avoid the slug flow regime during normal operation through 

adoption of suitable Q/m values at all times 

Obtain a relatively low subcooling temperature at the PHX inlet 

through pressure losses and/or heat sources in the feedwater line 
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