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Reactor Description 
 Reactor Type 
•  Pressurized, light-water 

moderated and cooled; beryllium 
reflector 

•  250 MWt (Full Power) 

Reactor Core 
•  40 fuel elements, curved-plate, 

aluminum-clad metallic U-235 
•  Highly enriched uranium matrix 

(UAlx) in an aluminum sandwich 
plate cladding 
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ATR Core Cross Section, Test Positions 

•  Test size - up to 5.0” Dia. 
•   77 irradiation positions: 

-    3 flux traps 
-    6 in-pile tubes 
-    68 positions in reflector 

•   Approximate Peak Flux: 
-   1 x 1015  n/cm2-sec 

thermal 
-   5 x 1014  n/cm2-sec fast 

•   Hafnium Control Drums 
-  Flux/power adjustable 

across core 
-  Maintains axial flux 

shape   
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Background 

•  The current safety basis for the Advanced Test Reactor (ATR) is based 
on an assumed axial power distribution in the fuel 

•  Recent measurements in the ATR critical (ATRC) facility have shown 
that some loop experiments affect the axial power distribution in 
adjacent fuel elements 

•  An evaluation was performed to determine the effects of various axial 
power distributions on thermal safety margins for a limiting reactivity 
insertion accident (RIA) 
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A suite of codes is used to determine core 
thermal safety margins  
•  Safety limits are based on critical heat flux (CHF) and flow instability 

(FI) 
•  RELAP5/MOD2.5 and RELAP5/MOD3 are used to simulate the 

thermal-hydraulic response the reactor coolant system and to provide 
boundary conditions for detailed simulations of the limiting fuel plate 

–  The principal boundary conditions include reactor power, inlet 
pressure, inlet temperature, and differential pressure across the 
fuel plate 

•  ATR-SINDA is used to calculate the thermal-hydraulic response of the 
limiting subchannel, called the hot stripe, adjacent to the limiting fuel 
plate and to perform mutli-dimensional heat transfer calculations 
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A suite of codes is used to determine core 
thermal safety margins (cont’d) 

•  SINDA-SAMPLE is used to compute the safety margins for the limiting 
subchannel of the limiting fuel plate using a statistical approach  

–  Boundary conditions from RELAP5 and ATR-SINDA are used 
–  Simplified thermal-hydraulic and heat transfer calculations are 

performed for 1200 samples or trials 
–  Probability distributions are assigned for 45 important input 

parameters, such as the RELAP5 boundary conditions, plate 
geometry, material properties, etc.  

–  Each input parameter is varied independently based on statistical 
sampling for each trial 

–  The variations of the output are used to determine the thermal 
margins to CHF and FI  

–  The thermal margins are expressed based on the number of 
standard deviations (σ) to CHF and FI  
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A suite of codes is used to determine thermal 
safety margins (cont’d) 
•  For some limiting transients, the worst trial from SINDA-SAMPLE is 

simulated with ATR-SINDA to demonstrate compliance with plant 
protection criterion  

–  ATR-SINDA provides a more detailed and accurate heat transfer 
calculation than SINDA-SAMPLE 
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Seven different axial power variations were 
evaluated  

	
  

•  The current safety basis 
assumes the original power 
distribution  

•  The unperturbed distribution 
is based on a cosine shape 

•  The other distributions are 
based on ATRC 
measurements for a particular 
experiment 
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Accident selection 
•  The effects of the variations in the power distribution were determined 

for the most limiting RIA in the safety basis 
•  The RIA was initiated by a double-ended offset shear of the pump 

discharge piping in an experiment loop  
–  The loop blowdown causes reactivity insertion and an overpower 

transient  
•  The experiment loop is hydraulically separated from the primary 

coolant loop 
–  Therefore, the inlet pressure, inlet temperature, and differential 

pressure across the fuel plate remain relatively constant 
–  The reactor power is the principal boundary condition that changes 
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Reactor power calculated by RELAP5 

	
  

•  The results were not sensitive 
to the axial power distribution 

•  The maximum effect on peak 
power was less than 1%  
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Core differential pressure calculated by RELAP5 

•  The power excursion had a 
small effect on the differential 
pressure across the core  

•  The results were not sensitive 
to the axial power distribution 
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Inlet pressure calculated by RELAP5 

•  The power excursion had a 
small effect on the inlet 
pressure  

•  The results were not sensitive 
to the axial power distribution 
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Inlet enthalpy calculated by RELAP5 

•  The power excursion had a 
small effect on the inlet 
enthalpy  

•  The results were not sensitive 
to the axial power distribution 
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Maximum fuel temperatures from ATR-SINDA 

	
  



16 

Margin to CHF from SINDA-SAMPLE 

•  The original power distribution 
was limiting in terms of the 
margin to CHF from SINDA-
SAMPLE 
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Simulation of worst trial using ATR-SINDA 

•  The original power distribution 
was limiting in terms of 
maximum cladding temperature 
for all the distributions except 
one 

•  The power had to be reduced 
by 1.1% for one distribution so 
that the original distribution 
would be limiting  

	
  



18 

Criteria for bounding the effects of new power 
distributions were developed 
•  Maximum cladding temperatures that occur during the RIA are caused 

by CHF rather than FI 
•  The occurrence of CHF depends on the local axial peaking factor  

(determines the heat flux) and the CHF (depends on fluid velocity and 
subcooling) 

•  Variations in fluid velocity are small for this event 
•  The subcooling is determined by the sum of the power fractions for the 

axial nodes upstream of a given node 
•  Therefore, a new power distribution will be bounded by a previously 

evaluated distribution IF 
–  The axial peaking factor AND the sum of power fractions between 

the inlet and the current node are less than the corresponding 
values from the SAME previously evaluated distribution  
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Conclusions 
•  The boundary conditions calculated by RELAP5 and passed to ATR-

SINDA and SINDA-SAMPLE were insensitive to the axial power profile 
in the fuel elements 

•  ATR-SINDA and SINDA-SAMPLE calculations showed that the axial 
power profiles significantly affected safety margins 

•  The original axial power profile was generally limiting 
•  Criteria were developed to compare new axial power distributions with 

those evaluated here 
•  Additional analyses were recommended if a new power distribution is 

not bounded by one of the power distributions evaluated here 


