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GHG Emission Reduction?
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Presenter
Presentation Notes
We studied the production of ethylene from waste biomass: carbon recycling. Divert solid waste that was biodegradable, produce a syn gas, and from there ethylene. The point, obviously, is to reduce GHG emissions, to keep Carbon in the technosphere rather than releasing it quickly to the atmosphere. Highest value use. Guess how much GHG emissions were reduced by?
NEGATIVE 200%
Yes, GWP increased by 200% over the business as usual case. 
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Presenter
Presentation Notes
Today I’m going to talk about environmental systems analysis, which make up a critical component to any research related to recovery, reuse, recycling, and remanufacturing. 
After all, what is the impetus for R4 activities? 
The way I see it, there are two compelling reasons. 1. We are going to run out of Zn, Cu, Au – the materials and elements our industrial economy is based on. 2. We want to reduce the overall environmental impact associated with our activities, which includes the first point of resource depletion. 
The reason we need to use environmental systems analysis is to avoid situations like the one I just pointed out: we don’t want the net result to be an increase in emissions if the point of the new technology is to lower emissions. There are hundreds of these types of cases throughout the literature: you don’t want R4 activities to fall into that camp!


Recycled Materials Resource Center



Presenter
Presentation Notes
For about a decade I ran the RMRC, funded by the FHWA to develop technologies, conduct research and outreach to further the adoption of sound recycling practices in the transportation sector. My research focus in that effort was quantifying and understanding the benefits, impacts and tradeoffs associated with technologies or practices. 
 
By the end of my talk, I think that you will agree that systems analysis is critical for QUANTIFYING the improvements / changes associated with a given R4 activity. Which materials are important to focus on and why? Where do existing materials or processes fall short? What are the tradeoffs with new technologies or materials?  These are some of the questions that can be answered using these methods. It can help set the strategic direction for R4-I, as well as quantify its impact. 
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Presentation Notes
Substance, energy, material flow analysis. Can provide a global or national level view on resource availability, depletion, cycling, etc. 

Stocks = food, buildings, chemical products, agriculture, cars, biomass, electronics, in human cells


North American Copper MFA
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Lifset, R. J., et al. "Where has all the copper gone: The stocks and flows project, part 1." JOM 54.10 (2002): 21-26.
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Presentation Notes
STAF = Stocks and Flows Project, Center for Industrial Ecology at Yale, Units are kt/yr, 1994 data
The vast majority of the copper used in the North American economy was mined, smelted, and refined within the continent. 
The waste management system in North America recycled about 60% of the waste copper in 1994, with the vast majority of that arising from production rather than post-consumer waste streams. 
In total, about 1,400 kt of domestic copper waste flowed into the North American waste management system and another 190 kt of old scrap were exported. 
Of the copper entering the waste management system as EOL wastes, just over 500 kt were recycled and 700 kt were landfilled.
Waste electronic and electrical equipment and EOL vehicles constitute only 7% of the overall waste stream. 
Those waste streams, however, contained about 80% of the total copper entering the waste management system. 
The recycling rate in North America, excluding prompt scrap and exported old scrap, was about 36%. 
The United States landfilled 641 kt of the total of 700 kt of copper landfilled in North America. 
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----- Meeting Notes (9/25/13 14:58) -----
Consider Carbon as any important element. It's important in our economy, and also important from an emission / environmental accumulation perspective. Could replace this with Pt or Au or whatever.


Sorting and Recycling of MSW
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Figure 2 Initial flowchart of the systems studied.
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Figure 7 Global warming potential (GWP] of the PIA polymers (1 kg at the factory gate) from wood and corn feedstock
compared to the production of an equivalent amount of PAA from fossil-feedstock.
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Figure 9 Cumulative energy demand [CED — fossil/nuclear) for the three polymer production routes.
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Figure 13 Eutrophication impacts associated with the production of 1 kg polymer at the factory gate.

i3



Lo

B Polymerzation
&5 4
B Recovery
5 5
]
e ® Fermentation
§E°
2 = W Sugar Extraction
L
;': = 4 ¥ Feedstock
Z :ﬁ‘ Growth/Harvest
3L
E 2
1
0 - ,
FlA, Wood FlA, Corn PAA, Fossil-based

Figure 17 Agricultural land occupation associated with the production of 1 kg of polymer at the factory gate.
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----- Meeting Notes (9/25/13 14:58) -----
This is technology evaluation: uses data from 3 pilot scale efforts to evaluate.
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Presentation Notes
Comparison of the system-wide global warming potential (GWP) of producing 1 kg of HDPE from MSW with its fossil-based counterpart. Data for fossil-based HDPE comes from the US LCI database (HDPE #1) and ecoinvent (HDPE #2).
The point here is that we can see where in the process GWP is being generated, where improvements are needed. 
Systems analysis can drive technology needs / ID where we need technology development
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Presentation Notes
Worked with large electricity generator – wanted to convert from coal to waste wood.
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7 is computer simulation – others are pilot plants with less efficiency than full scale would likely have.


Conclusions

e Systems analysis an important research tool

e Often are tradeoffs, or burdens in other parts
of the life cycle

 R4-| should lead to quantifiable, tangible
benefits — resource consumption,
environmental burdens, etc.
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Presentation Notes
As we have seen, there are many examples of systems analyses that have shown poor policy or technology choices. Incorporating systems analysis into the research program will make it clear where technology improvements are needed – where resource depletion is critical or environmental impacts are significant. Systems analysis will ensure the Institute focuses on significant problems with tangible, quantifiable benefits.


Thank you!

Kevin Gardner
kevin.gardner@unh.edu
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