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The Challenge to Safeguard 
• Must protect against 

diversion of Pu-
containing materials 

• Multiple streams of 
batches 

– Salts 
– Metals 
– Oxides 

• No input 
accountability tank 

• Nuclear Material 
Accountancy will not 
yield sufficient 
confidence levels 

Pu SQ = 8 kg 
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Neutron Balance Approach 
• Cm-244 has much higher spontaneous 

neutron emission rate (4.19x106/sec-g) 
than any of the Pu isotopes (920/sec-g) 

• Theorized by some that Cm will track 
Pu throughout the process 

• Not supported by experimental data. 
– Standard reduction potentials are close, 

but not identical. 
– S. Li demonstrated the affect of cathode 

potential on separation factors. 

• At U. of Utah, we used the ERAD 
model to simulate electrorefining of 
fuel with Pu and Cm to further 
assess. 
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Simulated U-Pu-Cm Electrorefining (ERAD) 
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Electrorefiner Monitoring 
• 50 kg of Pu in each pool of salt. 
• INL systems are under “domestic 

safeguards” using a Mass Tracking 
System 

• This approach will not satisfy timeliness 
requirements established by the IAEA. 

• International safeguards requires ability to 
independently validate user declarations. 

• One potentially practical approach is to 
use real time process monitoring data to 
evaluate whether the user declarations are 
likely to be true. U cathode 

deposit 
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Salt Monitoring via CV 
• Continuous measurement of actinide 

concentrations in the salt can be helpful 
for validating user declarations. 

• Diversions from the ER can be picked up 
via changes in salt composition. 

• Cyclic voltammetry (CV) is a simple 
electrochemical method that has been 
studies for this purpose. 

• Peak current density can be related to 
concentration and diffusivity using 
Randles-Sevcick Equation. 
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If D is known, this method can 
be used for online monitoring 
of actinide concentrations in an ER. 

SmCl3 in LiCl-KCl 
Allahar et. al. 2014 
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Variability of Diffusivity 
• Using the Randles-Sevcick equation, 

known concentrations, and measured 
peak heights, D was calculated and 
plotted versus concentration. 

• Greater than 10% variability, thus 
limiting precision of concentration 
measurement. 

• Variability expected to be even more 
unpredictable in multi-component 
solutions. D = F(xi) 

• No way to separately determine 
diffusivity and concentration for these 
systems. 

• What we can determine is coD½  
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Peak Fitting Multi-Component Salts 
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Principle Component Regression (PCR) 
• Uses all the data, does not require 

knowledge of diffusivity or peak 
separation 

• Identify main contributors to variance 
from a training set (principal 
components) 

• Regress the PCs with concentration 
• Predict unknown composition 
• D. Rappleye will present results of 

applying this analysis to LaCl3/GdCl3 

LiCl-PuCl3-UCl3 CV data taken 
from Iizuka et. al. (2001) 
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Monitoring Cathode Deposition 
• What about monitoring of the cathode 

composition? 
• Variety of process conditions can lead to 

co-deposition of U and Pu 
• Can we directly determine when Pu is 

reducing onto the cathode? 
• Combining Nernst & Butler-Volmer 

equations can yield equation for partial 
current of each depositing species 
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DREP Model 
• Unknowns: 

– Ek – cathode potential 
– Cb,j

ox – bulk salt concentration of  
• Measured: 

– Ek – cathode potential 
– Icell – cell current 

• Constraint: 
 
 

• Assume Cb,j
ox to be constant 

• # of steps (j) = # of components (k) to 
be solvable 
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DREP vs Simulated Electrorefining 
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U/Pu Co-deposition Rates 
U (ERAD) U (DREP) Pu (ERAD) Pu (DREP)

• U/Pu electrorefining runs simulated 
with ERAD model 

• Matrix of starting compositions 
considered 

• Experimental validation study 
ongoing 

Average Relative Error 
U 3.88%  

Pu 2.84%  

Case 1 2 3 4 
U (wt%) 7.567 2.567 2.234 2.234 
Pu (wt%) 0.234 0.234 0.567 2.567 
Case 5 6 7 8 
U (wt%) 1.234 1.234 1.234 0.313 
Pu (wt%) 3.234 5.567 7.567 4.234 
Case 9 10 11 
U (wt%) 0.213 0.213 0.213 
Pu (wt%) 4.234 5.567 7.234 
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Monitoring Electrolytic Reduction 
• Normal operations: 

 
 
 
 

• Potential abnormal operations: 
 
 
 
 

• How do we detect if this has occurred in 
a system? 

PuO2 

UO2 

O2 

O2 O2 

O2 

UO2 + 4e- = U + O2- 

PuO2 + 4e- = Pu + O2- 
2O2- = O2 + 4e- 

UO2 + ¾ ZrCl4 + ¼ Zr = UCl3 + ZrO2 

PuO2 + ¾ ZrCl4 + ¼ Zr = PuCl3 + ZrO2 

LiCl-Li2O 

(-) (+) 
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Spectroscopic Analysis of Salt Samples  
• Inspector requests sample of 

electrolytic reduction salt 
• Sample transferred remotely to 

sample chamber interfaced with 
light source + spectrometer 

• Using fiber optics, both reflectance 
and transmission methods can be 
used. 

• Variety of options for spectroscopy 
(LIBS, UV-Vis, HKED) 

Compatible with 
LIBS, UV/Vis, etc. 
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LIBS of LiCl-KCl-PrCl3 

R² = 0.9644 
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between peak height and concentration. 

Weisberg et. 
al. 2014 



METALLURGICAL ENGINEERING 

Signature Based Safeguards Approach 
Build 
process 
model 

Select, 
model, and 
place sensors 

Systematic 
identification of 
normal and off-
normal scenarios 

Simulate 
abnormal 
processing and 
generate sensor 
output 

Simulate normal 
processing and 
generate sensor 
output 

Analyze 
signatures for 
diversion based 
on sensor output 

Reduce or increase # 
sensors for adequate 
confidence 

Initiate operations 

Real time monitoring 
and signature 
analysis 
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• Investigated simple abnormal 

operation in which O2 feed is shut 
off, resulting in no UO2 oxidation. 

• Result would be holdup of spent 
fuel in cladding hulls that could be 
diverted through waste disposal 

• What if mass measurements 
cannot be trusted? 

• Electric power supplied to the 
furnace could be used to catch 
diversion, because reaction is 
exothermic.  Less reaction results 
in higher furnace power. 
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Many ER Sensor Options…. 
• Cell current/voltage 
• Voltammetry 
• Thermocouples 
• Furnace power 
• Density probe (double bubbler) 
• Neutron counting/gamma 

spectroscopy 
• Spectroscopic measurements 

– Laser Induced Breakdown 
Spectroscopy 

– UV/Vis Spectroscopy 
– HKED 

• Sampling & destructive analysis 
(very slow) 
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Overall Conclusions 
• While pyroprocessing poses unique challenges 

for implementation of safeguards, it is feasible 
based on an approach that seeks to verify the 
truth of facility declarations and identifies 
signatures of misuse. 

• We need to continue development of 
pyroprocessing sensors and build open-source 
process models. 

• Transparency is the key to achieving a rock-solid 
safeguards approach.  
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