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Brief Summary

e Puis not a Contaminant of Concern, but
requires attention

 Options for remediation have been
Identified, for example, capping to reduce
Infiltration

« However, near-term and long-term
monitoring will be important

 Transport of Pu in colloidal form is one of
the important factors regarding transport
predictions (if transport can occur)
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Pu at the INL Subsurface Disposal Area

« ~113 kg Pu in wastes from Rocky Flats buried at SDA

e ~42 Kg (~4%) of Pu estimated to be in the form of
partlculates e.g., in HEPA filters)

* Pu can be found in soluble form, but is found to adsorb
strongly to mineral surfaces, including mobile particulates

. INthubsurface characterized by fractures and fast flow
paths

« = Transport of Pu in colloidal form is a concern
« > Transport models must consider colloids

—> State of Pu found in field samples (if any) will
Impact transport interpretation
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Monitoring

 Purpose
— Is current risk is unacceptable?
— Will existing conditions prevent exposure in the future?
— Do you find what you predict?
« Concentrations
 Distribution
e State
— What could be the consequences of new conditions?

— Setting action levels: If unacceptable risk is predicted or observed,
what are appropriate responses?

— Will responses be feasible or should be developed?
* Issues of uncertainty and scientific basis affect Public confidence
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Facets of Monitoring

« Conceptual Model
— Hydrology
— Media properties
— Contaminant properties
e Chemistry, biochemistry
e Colloid transport
— Filtration
— Rapid transport
e« - Sampling
— Methods and artifacts (e.g., preservation)
— Sample types (solids, solutions, etc.)
— Timing
— Locations

« - Correspondence between contaminant distribution/speciation
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Questions:

 Are the conceptual models adequate?

 Does sampling strategy and methods
support the conceptual models?

T



Current model:

« K, =0In basalt
— Fractures

— Low surface area
— Fast flow

K, In sedimentary interbeds = Kd for Pu
sorption (2500 ml/qg)

o Stratigraphy, flow paths, flow patterns

*No data for Pu plume that can be used for
model calibration.
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Colloid Transport: Size and lonic Strength Effects
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Colloid Transport:
Why does the curve have a maximum?
What decreases nor o ?

EDL overlap for _
Large particles have

more momentum to overcome
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Estimated particle size distribution for Pu
particles at SDA
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Colloid migration lengths
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99.9999% removal distance in sediments

 Colloid diameter =1 micron (optimum transport)
 Colloid density =11.4 gm/cm3
e Case 1:
— Porosity =0.4
— Flow = 10cm/yr
— Mean grain size = 0.5mm
e Case 2:
— Porosity = 0.5
— Flow rate = 100 cm/year

— Grain size = 2mm
e Casel:4.7cm
e Case 2: 206 cm




However

« Kersting et al., Putransport at NTS
 Fjeld, Coates and Elzerman, 2000 (column studies)
» Penroseetal., 1990 (LANL)
— Conservative tracer (tritium): 3.4 km/yr
— Pu transport with sorption: 4.2 cm/yr
— Pu transport with sorption and colloids: 4.7 cm/yr
— Actual Pu migration: ~500 m/yr

 Also, Perturbations?
— All fluids intercepted by sediments
— Constant, “low” flow
— Constant chemical conditions
 Also, how good are colloid filtration models?




For breakout sessions

« Can we prioritize the science leading to the
development of scientifically based, integrated*
monitoring strategies?

 *Integrated:
— Conceptual models
— Sampling methods and strategies
— Lab and field studies

 Important issues: Scaling, simplifications
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Colloidal Borescope

*A CCD (charged-couple device) camera
*Flux-gate compass

*Optical magnification lens (140X)
lllumination source

«Stainless steel housing

«24 inches long by 1.7 inches in Diameter
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Colloid Facilitated Transport
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Diffusion Advection sorption

C,, = total conc. in mobile phase at point x
(includes dissolved and colloid-bound)

C..p,= total conc. Sorbed on immobile phase

D = diffusion coef. (or dispersion)

V,= velocity in x direction

B = bulk density of matrix
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m Flmd viscosity kg/(m s) (0.001)
Fluid density kg/m’ (1,000)
o Colloid density kg/m’ (11,400 for PuO,)
Cr Collod concentration at distance L kg/m’
Co Imitial particle concentration kg/m’
D, Diffusion coefficient m'/s
d. Collector (sediment grain) diameter m (see text)
I Collector (sediment grain) radims m (see text)
Colloid diameter m (see text)
Collod radims m (see text)
Porosity unitless
Gravitational constant m/s” (9.8)
Hamaker constant kg m'/s” (1 x 1079
Boltzmann's constant ke m'/(s" K) (1.381 = 107)
Temperature kelvin, K (see text)
Velocity m's (see text)




